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Abstract: A common task in dance, martial arts, animation, and many other movement genres is for the character to move 

in an innovative and yet stylistically consonant fashion. In this paper, we describe two mechanisms for automating this 

process and evaluate the results with a Turing Test. Our algorithms use the mathematics of chaos to achieve innovation 

and simple machine-learning techniques to enforce stylistic consonance. Because our goal is stylistic consonance, we used 

a Turing Test, rather than standard cross-validation-based approaches, to evaluate the results. This test indicated that the 

novel dance segments generated by these methods are nearing the quality of human-choreographed routines. The 

test-takers found the human-choreographed pieces to be more aesthetically pleasing than computer-choreographed pieces, 

but the computer-generated pieces were judged to be equally plausible and not significantly less graceful.  

1. INTRODUCTION 

 Musical or choreographic variation—one of the most 

fundamental of compositional techniques—are based upon 

two phases of work: establishment of a grounding theme and 

a series of structured departures from that theme. Classic 

examples are Bach's Goldberg Variations for the keyboard 

or Balanchine's The Four Temperaments ballet. The 

properties of dynamical chaos provide unusual mechanisms 

for achieving these effects. The characteristic patterns of 

strange attractors can be used to capture the underlying 

theme of the sequence and chaos's sensitive dependence on 

initial conditions can be used to produce variations. This 

intriguing notion was proposed by Diana Dabby in the 

mid-1990s in the context of music and image [1, 2]. Inspired 

by Dabby's work, we set out to apply some similar ideas to 

dance. The result was the pair of tools that are described in 

this paper: CHAOGRAPHER, which produces chaotic 

variations of keyframed movement sequences, and 

MOTIONMIND, which extracts the patterns from a corpus of 

movement sequences and uses those patterns to generates 

original and yet stylistically consonant movement. 

 These two tools, working together, can produce novel, 

interesting movement. The core of CHAOGRAPHER's strategy 

for introducing novelty is to create a mapping that associates 

a sequence of body positions with a chaotic attractor, and 

then use that mapping to generate variations. The fixed 

attractor structure guarantees that the variations will 

resemble the original in a mathematically precise sense, 

while sensitive dependence on initial conditions guarantees  
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that each variation will be different. From an esthetic 

standpoint, variations generated in this fashion are both 

pleasing and strikingly reminiscent of the original sequences. 

Loosely speaking, they resemble the original pieces, but with 

shuffled subsequences. Our work differs from Dabby's in 

several ways, beginning with the representation. Musical 

notation is well established and straightforward, but 

capturing the state of the human body is far more 

complicated. The mathematics of our mapping is different 

from Dabby's in some formal ways that are detailed in [3, 4]. 

And while musical instruments can play arbitrary pitch 

sequences, subject to instrument range and performer ability, 

kinesiology and style impose a variety of constraints on 

consecutive body postures in movement genres. This 

becomes particularly important when subsequences of a 

piece have been shuffled, as in CHAOGRAPHER's algorithm, 

because the ending posture in one subsequence may be very 

distant, in “body space,” from the beginning posture of the 

subsequence that follows it. This issue, which arose in the 

dance world in the 1960s when choreographers began 

exploring the use of randomization in performance, was the 

catalyst for the line of research described in Section 4. The 

end result of that line of work was the MOTIONMIND tool, 

which uses directed graphs and Bayesian networks to capture 

the patterns that are inherent in a corpus of movement 

sequences. These data structures can then be used to generate 

original stylistically consonant movement sequences. One 

can do this via a directed search to find a “tweening” 

sequence between two prescribed positions, or one can 

generate free-form original movement simply by “walking” 

these graphs. As described in section 6, all of these ideas 

apply to other kinds of sequences that have characteristic 

patterns, such as flight simulators. 

 Assessment of the results of physical motion synthesis is 

a challenge. Most approaches to date have used variants of 
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cross-validation that proceed according to the following 

steps:  

1) remove a segment from a motion capture or video 

database, creating a gap;  

2) learn a model of human motion from the segments 

remaining in the database;  

3) use the model to interpolate across the gap; and  

4) calculate a measure of “distance” between the 

simulated and held-out segments.  

 The limitation of this approach is that it rewards 

synthesis that closely mimics exact movements contained in 

the corpus. Cross-validation error may not capture 

qualitative aspects that are important for value judgment, 

such as stylistic consonance in a generated dance sequence. 

There are two opposing forces when the goal is 

improvisation in dance. On the one hand, choreographers 

may be interested in synthesized segments that are novel, i.e. 

different than any existing segment in the corpus. On the 

other hand, choreographers may not be interested in 

segments far outside a particular genre as they may be 

inappropriate for incorporation into a piece. Therefore, if the 

goal is to synthesize unanticipated movement sequences that 

remain thematic, distance-based evaluation approaches, in 

which the distance is calculated only between positions of 

observed and generated sequences, will be of limited 

usefulness. To address this issue, we used a Turing Test in 

which human subjects were asked to judge both computer- 

and human-generated dance pieces in a blind experiment. 

While measuring the merit of the naturalness and style of a 

piece is necessarily subjective, our hope is that, if enough 

human subjects are shown the sequences, we will gain an 

average notion of whether the computer is able to reproduce 

novel dance sequences of high quality. 

 The rest of this paper is organized as follows. The 

movement representation strategy is described in Section 2. 

Section 3 gives a brief overview of the mathematics of 

chaos, then shows how to inject novelty into a movement 

sequence by mapping it onto a chaotic attractor. Section 4 

describes how to capture and enforce stylistic consonance in 

movement sequences by using statistical graph-theoretic 

methods to learn the “grammar” of joint movements in a 

given corpus and then searching those graphs to find 

stylistically consistent interpolation sequences between pairs 

of body postures. A Turing Test of these results is presented 

in section 4.4. We conclude with a summary of the 

implications of the work and a discussion of future 

directions. 

2. REPRESENTING HUMAN MOTION  

 The human body moves using a complex combination of 

gross and fine articulations and many different 

representations have been developed to capture its state. To 

mathematically model the body using a tractable number of 

parameters, the representation used in our work simplifies 

the body's degrees of freedom into 23 main joints. This 

model neglects some of the smaller joints (e.g., the 

individual fingers) and treats the spine as four rigid segments 

rather than 24 individual vertebrae. The orientation of each 

joint is specified with a quaternion, a standard representation 

in rigid-body mechanics that dates back to Hamilton [5]. A 

quaternion 
   
q = (r,u)  consists of an axis of rotation u  and 

a scalar r  that specifies the angle of rotation of the joint 

about u . A single body position, in this representation, 

translates to 23 descriptors ( pelvis, right-wrist, etc.), 92 

floating-point numbers (four for each joint), and information 

about the position and orientation of the center of mass. An 

example is shown in Fig. (1a). We represent motion as a 

series of quaternion-based snapshots, or keyframes, which 

are evenly spaced in time. Such a sequence can be rendered 

graphically into an animation using a variety of software 

packages; in this paper, we use LifeForms (tm), a 

commercial animation tool that is common in the dance 

community. See Fig. (1b) for an example of LifeForms 

output. This tool uses spline interpolation to smooth or 

“tween” between the keyframes, which can be spaced 

coarsely and unevenly in time when generated by human 

animators. The computer science community has many other 

tools (e.g., AutoDesk's Maya) and representations (e.g., 

ASF/AMC, BVH, C3D) for use in capturing and rendering 

human motion, most of which are designed for animation or 

motion-capture work, where data are gathered or produced 

automatically and frame rates are very high. The focus of 

this paper is the content of the movement sequences, not the 

quality of the rendering, so we do not go to the 

computational expense of state-of-the-art rendering 

techniques, but rather use the tool of choice in the domain 

(dance) to which our work applies. 

 The choice of human-motion representation used in 

computer animation is driven by the need for generality and 

automation. A standard approach to building finite 

representations of movement patterns is to discretize the 

joint angles in the body. In such a scheme, each joint  

can take on a finite number M  of allowed orientations 

Q ; in practice, 400<M . Q  can be defined in angle 

space or as a quaternion. In either case, discretization 

amounts to replacing actual orientation of the joint with the 

closest member of Q . Here, we use quaternions, 

expressing a body position A  as a discretized vector s  by 

setting each of its components s  equal to the quaternion 

in Q  that is closest to A . We can do this in )(log M  

time using K-D trees [6] to represent the Q  sets. 

 The strategy described at the end of the previous 

paragraph is analogous to “snapping” objects to a grid in 

computer-drawing applications. While this quantization is 

useful for computer movement representation, it has several 

interesting problems when used to capture human motion. 

Deriving a kinesiologically and esthetically successful 

discretization of joint states, for instance, is unexpectedly 

difficult. For example, simply performing an even 

quantization of the quaternion variable values—that is, 

classifying all orientations between, say, (right-knee, 1, 1, 0, 

1) and (right-knee, 1, 1, 0.2, 1) as an equivalence class and 
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representing them in the algorithms as a single posture—can 

produce visibly awkward results. The individual frames may 

be indistinguishable when viewed side by side, but the 

animations can look quite different. An example can be 

found at:  

www.cs.colorado.edu/˜lizb/chaotic-dance.html. 

The human visual perception system appears to be very 

sensitive to small variations in quaternion coefficients of 

motion sequences: small changes in a single coefficient can 

violate the motif of the motion. In ballet, for instance, linear 

motion is the rule and zigzags—“jaggies” introduced by a 

quantization scheme—can be quite startling. The same issue 

can arise when one is working in Euler-angle space. One 

solution is to use a non-uniform quantization scale for Q  

created by hand by an expert dancer. Such a scaling can 

contain more ‘clicks’ in some joint-angle ranges than in 

others, and can differ from joint to joint. A fruitful line of 

investigation would be to try to learn an optimal 

discretization based on examples, (e.g. using K-means 

clustering). Moreover, representing movement using a 

notation that had a unique description for every possible 

body position would create a very large state space, and 

learning in that space would require enormous amounts of 

training data. 

 As described so far, our representation captures joint 

orientations statically and in isolation, completely 

disregarding the kinesiological constraints that govern how 

they move together. For example, if the shoulder is in its 

resting position with the palm facing the thigh, the elbow can 

bend freely. If the upper arm is turned 180 degrees on its 

long axis—rotating the thumb inwards, past the leg, until it 

points backwards—the elbow cannot bend far before the 

anterior shoulder ligaments complain. Other parts of the 

body, too, affect this reasoning—via connection/flexibility or 

even via collision. The upper leg and hip, for instance, can 

physically interfere with the elbow movement in the example 

above. Considering each joint's movement in isolation also 

disregards the notion of movement style, which can be 

understood as another limiter of movement possibilities, 

similar to joint anatomy. For example, in classical ballet, the 

elbow/arm unit seldom crosses the midline of the body and 

the torso almost never articulates regions of the spine in 

isolation from one another. This is a function of relationships 

between sets of joints and it cannot be deduced from 

individual joint-angle sequences considered in isolation. To 

produce stylistically consonant motion, then—the goal in the 

work described here—one must also consider the 

correlations between joints. 

 In order to capture these constraints, we needed to 

incorporate a good model of joint coordination—one that 

takes into consideration both kinesiological and stylistic 

delimiters—into our representation of human motion. The 

most complete and general approach to this problem would 

be to model the interactions between each joint and every 

other joint in the body, or perhaps even between 

combinations of joints (e.g., whether the right hand crosses 

the centerline of the body). Doing so, however, engenders a 

combinatorial explosion in representational space, which can 

lead to problems for tracking and synthesis. There are 

sensible ways to reduce the complexity of the problem. To a 

first approximation, for instance, a joint is not influenced by 

every other joint in the body. The orientation of the wrist, for 

instance, strongly affects the orientation and movement of 

the fingers but has probably has little effect on the toes. We 

put this simplifying assumption into effect by using a 

Bayesian network [7] to explicitly represent the relationships 

between how different joints move. Other investigators have 

subsequently used more-expressive graphical models 

including dynamic Bayesian networks [8] and hierarchical 

HMMs [9]. The Bayesian network used in our work reflects 

the structure and physics of the human body: a tree with the 

pelvis at the root. Three branches lead from this root to 

nodes corresponding to the right hip, the left hip, and the 

lower spine. Each hip joint is the parent node to a knee, and 

so on. We assign a conditional probability distribution, 

estimated from the a corpus of human motion, to every 

(parent,child) pair in the tree. For every combination of 

states that a parent  and its child μ  can assume, the 

distributions estimate the probability that joint μ  is in 

 

 

 

 

 

 

Fig. (1). Representing and rendering human motion: (a) a quaternion-based description of a body posture (b) a LifeForms rendering of that 
posture. 

right shoulder, −.23485, −.68735, .12987, .22236

pelvis, 0, 0, 0, 1

atlantal, 0, 0, 0, 1

cervical_1, 0, 0, 0, 1

...

right sternum, 0, 0, 0, 1

...

Location, 0, 1, 0, 0

(a) (b)
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orientation r  given that joint  is in orientation q , for 

every pair of discretized quaternions μ
QrQq , . This is 

of course only a rough approximation, and a better idea 

would be to learn the true relationships that are implicit in 

the inter-joint correlations. That would be a more general 

way to capture kinesiology and style, and it could even 

elucidate hidden linkages (e.g., a hip injury that causes 

unusual shoulder movement). For example, one could use 

Dynamic Bayesian Networks [10] and a corpus of 

motion-capture data such as is described in the conclusion. 

3. CHAOTIC VARIATIONS ON MOVEMENT 

SEQUENCES  

 Given a human motion sequence, represented as 

described in the previous section, the algorithms described in 

this section use the mathematics of chaos to generate a new 

sequence that resembles the original in the sense of a 

variation on a theme. [4] describes the mathematical details 

of this approach and discusses its implications from the 

standpoint of nonlinear dynamics. This section begins with a 

brief overview of chaotic dynamics, then summarizes the 

chaotic variation algorithm and briefly reviews its results. 

3.1. Chaos 101  

 Chaos is a type of complex and yet highly patterned 

behavior that arises in deterministic dynamical systems
1
. 

One of the canonical examples in the field is the Lorenz 

system [11], a set of three coupled ordinary differential 

equations that comprise a highly simplified model of flow in 

a heated fluid:  

)(16)(16=)( txtytx  

)()()()(45=)( tztxtytxty            (1) 

 
z(t) = x(t)y(t) 4z(t)  

 The state variables of this system— x , y , and z — 

are physical quantities like the convective intensity in the 

fluid, which vary with time as the dynamical system evolves. 

Their time derivatives are indicated with dots: )(tx  and so 

on. The constant values in the terms on the right-hand side of 

the system of differential equations represent different 

physical conditions for the problem (e.g., the value 45, 

which represents how much heating is being applied to the 

fluid). The xy  and xz  terms on the right-hand side of 

equations (1) make this system nonlinear, which is a 

necessary condition for chaos. 

 If one starts the system (1) at some initial condition 
T

tztytx )](),(),([ 000
, follows the trajectory of its evolving 

state T
tztytx )](),(),([  for 

0
> tt , and plots that trajectory 

in the state space—whose axes are the state variables—one 

sees a strange attractor, as shown in Fig. (2c) or (d). Strange 

attractors have a variety of fascinating properties:  

                                                
1Those whose state evolves in a manner that is fully determined by the previous state. 

• they are covered densely by any trajectory starting 

in their basins of attraction,  

• their trajectories exhibit sensitive dependence on 

initial conditions,  

• they often have some fractal structure, and  

• they cannot be calculated in closed form, but rather 

the equations must be solved numerically in order 

to produce them.  

 See [12, 13] for introductions or [14] for a more- 

comprehensive treatment of these concepts. 

 The critical features of chaos, for the purposes of this 

paper, are the first two bullets of the list above. If one starts 

the Lorenz system from some other, nearby initial condition 
T

tztytx ])(,)(,)([ 000 +++ , the associated trajectory will 

relax to and cover the same attractor—unless, of course, the 

change in initial conditions bumps the trajectory out of the 

basin of attraction—but it will trace out that attractor's 

pattern in a very different order. Fig. (2) shows how this 

plays out; note the obvious difference between the top two 

plots, which show the time evolution of two nearby initial 

conditions, and contrast that to the similarity of the structure 

of the bottom pair of images, where the same information is 

plotted in the state space. This is the so-called butterfly 

effect: a small perturbation can have a very large effect upon 

the evolution of a chaotic system. Edward Lorenz first 

reported this behavior in a 1963 paper [11] entitled 

“Deterministic Nonperiodic Flow.” The term “chaos” was 

coined twelve years later [15]. 

 This fixed attractor structure provides an element of 

order and predictability in a chaotic system: any trajectory 

that is started in an attractor's basin will follow the same 

overall, time-asymptotic pattern. Sensitive dependence, 

however, makes chaotic systems effectively unpredictable, 

even though the future evolution of the system state is fully 

determined by the current state. One can prove that the 

trajectory will cover the attractor, but there is no way 

—without infinite-precision arithmetic and perfect 

measuring devices—to determine where that trajectory will 

be at a given time, nor the order in which it traces out the 

lobes and curves of the attractor. In essence, sensitive 

dependence on initial conditions magnifies small-scale 

effects that we do not see, such as floating-point arithmetic, 

into large-scale effects that we can measure. This 

combination of large-scale order and small-scale “mixing” is 

not only ubiquitous in science and engineering, but also 

highly intriguing, and it has a variety of practical 

applications, ranging from spacecraft control to heart-attack 

prevention [16, 17]. The following section explains how to 

exploit these properties to create chaotic variations on 

movement sequences. 

3.2. Chaographer  

 CHAOGRAPHER's task is to create a mapping of a dance 

onto a chaotic attractor, then use that mapping to generate 

new dances. To accomplish this, it first generates a reference 

trajectory, like the one in Fig. (3a), to define the attractor 
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geometry. It then “wraps” a keyframed sequence of body 

positions, represented as described in Section 2, around that 

attractor, associating successive keyframes in the sequence 

with successive state-space patches that are traversed by the 

reference trajectory. In order for this mapping to be useful 

for generating variations, these patches must cover the 

attractor and they must not intersect. We chose to implement 

this patchwise division of state space using a Voronoi 

diagram [18] on the reference trajectory points, as shown in 

Fig. (3b). A Voronoi cell around one of these points is the 

region of state space that is closer to that point than to any 

other. One draws Voronoi cells by constructing and 

intersecting the perpendicular bisectors of every adjacent 

pair of points, as shown in Fig. (3b), but our actual 

implementation is a nearest-neighbor calculation that, again, 

uses K-D trees [6] to reduce computational complexity.  

 The cells of a Voronoi diagram like (Fig. 3b) define a 

partition of the space occupied by the attractor, which has 

some interesting mathematical implications that we discuss 

elsewhere [4]. The reference trajectory defines a cell 

itinerary on these cells: one can imagine it lighting up those 

cells in some fixed sequence as it moves through them. A 

trajectory from some other initial condition in the basin of 

attraction of the attractor will move through those same cells, 

but in a different order—and therein lies the variation 

mechanism. We map the keyframes of the original sequence 

to successive cells in the partition, as shown in Fig. (4). To 

generate a variation, we simply start another trajectory at 

some different initial condition and play back the postures 

associated with each cell that it touches. 

 Fig. (5) shows an example of a chaotic variation 

produced in this manner. The first three frames of the 

variation follow the original sequence verbatim; the 

 

 

 

 

 

 

 

 

 

Fig. (2). The hallmarks of chaos: sensitive dependence on initial conditions in the context of a fixed, highly characteristic attractor geometry. 

(a) and (b) show time-domain plots of the x -components of trajectories from two nearby initial conditions in the canonical Lorenz system; 

(c) and (d) show the same trajectories in the state space (plotted here in an x  vs. z  projection).  

 

 

 

 

 

Fig. (3). Generating a tiling of a chaotic attractor: A Voronoi diagram is constructed from the points of a reference trajectory on the attractor 

—the dots in part (a)—to divide the space occupied by that attractor into non-overlapping patches or cells. The order in which the original 

trajectory traverses those cells defines the temporal order of the cell itinerary that corresponds to that reference trajectory.  

(a) (b)

(c) (d)

(a) (b)
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sequence order then diverges, inserting a single frame from 

the end of the original, then repeating a two-frame 

subsequence. It is impossible to appreciate this kind of result 

from a textual description or a static picture of a series of 

frames; see the animations at www.cs.colorado.edu/~ 

lizb/chaotic-dance.html. Chaotic variations generated in this 

fashion bear an obvious resemblance to the original 

movement sequences, which makes sense because both 

trajectories are moving on the same attractor, onto which the 

original motion sequence has been mapped. The variations 

are also clearly different from the originals. Broadly 

speaking, the variations resemble the originals with some 

shuffling of coherent subsequences. Note that this kind of 

ordinal shuffle does not appear in classic musical variations 

like Bach's. Later work, such as Lukas Foss's Baroque 

Variations or “sampled” music like that of Pierre Schaefer's 

“musique concrète,” does use ordinal shuffles—sometimes 

of multiple pieces—in developing musical themes. While 

this kind of ordinal shuffle does not fall under the classic 

definition of variation
2
, it has recently moved very much into 

the mainstream. Hip hop DJs, for instance, often use 

turntables to create a new piece by looping and mixing 

segments of an existing one. 

 The modern dance community has also explored the idea 

of an ordinal shuffle. In the early 1960s, the noted 

choreographer and dancer Merce Cunningham began to 

experiment with aleatory choreography: techniques of 

                                                
2``In the context of Western art music, the term commonly means elaboration of the 

melody or accompaniment; other kinds of modifications, such as development or 
transformation, are often considered to be outside the scope of variation” [19]. 

constructing movement and choreographic sequences that 

incorporated chance. This was part of a revolutionary shift in 

dance composition that introduced the idea that movement 

could be decomposed and manipulated by means other than 

the kinesthetic logic that is rooted in the body's 

neuromuscular system, thereby removing much of its 

thematic nature [20]. One of Cunningham's strategies was to 

compose motion sequences for different quadrants of the 

body and then combine them in arbitrary ways; in another, 

he used coin tosses or other randomization techniques to 

shuffle the temporal order of the phrases of a dance and 

invent new movement possibilities. Many of these 

techniques have since entered the dance vernacular; 

chunkwise shuffling, in particular, is used to this day by 

novices and professionals alike for generating choreographic 

materials. The chaotic variation technique described in the 

previous paragraphs essentially automates that process. An 

important difference is the chunking: a choreographer's 

notion of what comprises an atomic piece of dance depends 

on esthetic and stylistic constraints, among other things. 

CHAOGRAPHER simply ends the subsequence when it crosses 

into a neighboring patch—an effect that follows solely from 

the mathematical landscape of the chaotic system, not the 

dance—and chooses the starting point of the next chunk by 

examining which patch it has now entered. As in 

Cunningham's techniques, this provides a mechanism for 

innovation. In our experience, the dance community has 

been quite receptive to the notion of mathematically 

generated movement; not only has our work been warmly 

received at Dance/Technology conferences (e.g., [21]), but 

dancers have even adopted moves created by our algorithms. 

 

 

 

 

 

 

 

 

 

 

Fig. (4). A mapping that links a keyframed dance sequence and a chaotic attractor. Successive body positions from the movement sequence 
(a) are mapped to successive cells of Voronoi-partitioned chaotic attractor (b), producing a mapping that is schematized in (c). 

· · ·

(a) (b)

(c)
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Recently, too, we created and presented a multi-channel 

performance piece involving a human dancer and three 

animated avatars exploring a set of six chaotic variations. 

The music community, in contrast, was initially quite 

resistant to the notion of applying chaos to classical pieces, 

particularly by respected composers like Bach [22]. 

 It is interesting to contrast chaotic variations with random 

shuffles of the keyframes in the same original sequence, 

particularly in view of the mathematical techniques that are 

typically used by rendering software to transform a 

keyframed sequence into a smooth animation. The critical 

difference is that while the randomly shuffled sequences 

contains the same postures as the original piece, they do not 

preserve any of its subsequence structure. An example is 

available on the website listed above. Like many animation 

tools, the LifeForms software that we use to generate these 

movies uses splines to interpolate (or `tween') between 

keyframes, freeing its user from the onerous task of 

specifying body postures at the animation frame rate. The 

effect of this is to smooth the transitions in the random 

shuffles, creating some apparent structure. This is simply an 

artifact of the LifeForms animation process, however, and 

the random shuffles bear little temporal resemblance to the 

original at any timescale beyond that of a single pair of 

keyframes. 

 Note that the chaotic mapping does not constitute a 

model of the motion, nor are we claiming that human motion 

is chaotic. Rather, the chaotic attractor—and the mapping of 

the motion sequence onto it—is simply a `blender' that chops 

up and mixes the motion sequence. One could also 

accomplish this using random variables: i.e., index randomly 

into the sequence, play a chunk of random length, repeat. 

The results of this, as shown on our website, are similar to 

those produced by our scheme—indeed, Von Neumann's 

original random number generator was a chaotic system, as 

were Cunningman's “randomization” mechanisms—but 

using chaos in the manner that is described in this section 

enforces more constraints on the randomization so that 

original patterns are more frequently generated. 

 Chunkwise shuffles of motion sequences have an unusual 

and important property: the ending position of one chunk 

and the starting position of another may be quite different, 

requiring the dancer to make an abrupt transition if the two 

are pasted together. The transition between the third and 

fourth posture of the variation sequence of (Fig. 5), for 

instance, would be somewhat wrenching
3

. The adagio 

sequence on our webpage is a particularly good 

demonstration of this effect. These kinds of abrupt 

transitions occurred in Cunningham's phrase-shuffled work 

as well, and caused it to be met by substantial resistance 

from audiences, dancers, and critics when it was first 

introduced. (It is now a well-accepted creative mechanism in 

modern dance, though, and its effects are no longer startling 

to viewers from that community.) The following section 

presents a corpus-based technique for movement 

interpolation that can be used to fill in these kinds of gaps in 

a manner that remains faithful to the style of the movement 

genre. 

4. STYLISTICALLY CONSONANT INTERPOLATION  

 Given a pair of body positions, A  and B , and a corpus 

of keyframed movement sequences, the algorithms described 

in this section—embodied in the MOTIONMIND 

tool—construct a movement sequence that starts at A , ends 

at B , and is consistent with the style that is implicit in that 

                                                
3Recall that frames in this sequence are evenly spaced in time. 

 

 

 

 

 

 

 

 

 

Fig. (5). A chaotic variation generated using the strategy schematized in the previous figure. 

original

chaotic variation



8   The Open Artificial Intelligence Journal, 2010, Volume 4 Bradley et al. 

corpus. The simplest way to approach this is to use 

traditional interpolation techniques like splines to interpolate 

between the discretized, quaternion-valued representations 

A
s  and 

B
s  that correspond to these positions. The 

morphing techniques that have been so effective in computer 

graphics (e.g., [23]) do exactly that; as mentioned on the 

previous page, the animation software that we use to produce 

movies also uses splines to interpolate or `tween' between its 

keyframes. Simple interpolation techniques, however, do not 

work well for human motion. Splines, for instance, take the 

shortest path, subject to various continuity constraints, 

through the interpolation space, but human joints may not 

move in those ways. The shortest path from a head rotation 

of -120 degrees to one of +120 degrees—from looking over 

one shoulder to looking over the other—would be a rotation 

through facing backwards, which is not physically possible. 

Spline-based animation tools often produce these kinds of 

glitches. Clearly some sort of algorithm that captures both 

real physical constraints and behavioral patterns is necessary; 

building such an algorithm a priori, however—as in the 

work of Jessica Hodgins and collaborators (e.g., [24, 

25])—is extremely difficult. Another approach is to use 

machine-learning techniques to build models of movement 

patterns from corpora of human motion, as described below. 

 A critical design parameter in any interpolation strategy 

is the choice of state variables—in our case, the descriptive 

granularity. We first tried working with entire body positions 

and treating them as atomic objects, but the results were 

unsatisfying [4]. This approach was too highly constrained, 

from a creative standpoint: it could only use full-body 

postures that had been observed in the corpus, verbatim. And 

the enormity of the associated state space—one state for 

every possible full-body position—means that training any 

machine-learning strategy for it would require a huge 

amount of data. To address this issue, several investigators 

project movement sequences to lower dimensions, for 

example using principal components analysis (PCA) [26, 

27]. This projection takes advantage of inherent correlations 

between joint movements. Movement can then be generated 

by sampling database examples using the decomposition 

[28]. 

 Another approach is to interpolate using a graphical 

model that captures dependencies (perhaps nonlinear) among 

joints, as we do here: build graphs to capture the orientations 

and motions of each joint, and Bayesian networks to capture 

their inter-relationships. This approach can patch together 

joint orientations observed in different keyframes to obtain 

body-posture sequences that are novel, kinesiologically 

valid, and stylistically consonant. A preliminary version of 

this strategy was described in [29]; the rest of this section 

describes our final version and assesses the results using a 

Turing Test. 

4.1. Capturing Joint Movement Patterns 

 We capture the patterns in a joint's motion using a 

transition graph built from a movement corpus. Vertices in 

these graphs represent particular joint orientations, 

represented as described in Section 2. Edges correspond to 

the movement of the joint from one orientation to another. 

The corpus is used both to identify orientations that the joint 

assumes and to estimate the corresponding transition 

probabilities between orientations. Note that our graphs are 

finer grained than the “motion graphs” that are used in the 

graphics community [30], whose vertices represent temporal 

subsequences of the original motion and whose edges 

capture transitions between those clips. Our graphs capture a 

jointwise decomposition of the motion. To build them, we 

first discretize every body position in the corpus, so that a 

consecutive pair of body positions ),( BA , each consisting of 

23 continuous-valued quaternions, becomes the discretized 

pair ),( ts  where ts ,  each consist of 23 discretized 

quaternions. We then build a transition graph G  for each 

joint ; G  contains M  vertices—one for each allowed 

orientation of that joint. We record the fact that joint  is 

allowed to move from s  to t  by introducing an edge in 

G  from vertex s  to vertex t . We then assign a weight 

to this edge that models the “unlikeliness” with which  such 

a transition occurs in the corpus, calculated using    

the negative log-likelihood of observed transitions: i.e. 

)=|=( isjtlogP . At the same time, we build a 

Bayesian network that, for each joint orientation, keeps track 

of the observed orientations of all of the “parent” joints in 

the body. (Recall that this strategy, described at the end of 

section 2, models inter-joint coordination by capturing the 

conditional probability distribution of observed orientations 

of joints that are parent-child pairs in a network whose 

topology mimics the human body). See [29] for the 

mathematical details of all of these calculations. 

 Fig. (6) shows a transition graph for the right ankle that 

was constructed in this fashion from a 575-posture corpus of 

cartwheels. The complex topology of this graph—and of the 

graphs corresponding to the other joints in the body, which 

are equally complicated—reflect the intricacy of human 

motion. Even though joint angles are quantized, the number 

of joints and associated degrees of freedom makes the 

number of vertices quite large. The branching factor is also 

high; a joint can move at different speeds along any of its 

degrees of freedom, accessing a large number of different 

next states. Long, linear vertex chains like the one that is 

magnified in Fig. (6) are introduced into the joint transition 

graph when one movement sequence in the corpus 

progresses through orientations that do not occur in any 

other sequence. This is a common effect in small corpora. A 

large, rich corpus, in contrast, translates to a heavily 

connected graph, reflecting that a given joint orientation has 

been accessed along different paths. This has some 

interesting effects on the results, as described in the next 

section. If the motion is much slower than the frame rate, the 

graphs become variants of birth-death chains, wherein a joint 

can either stay where it is or move to its immediate-neighbor 

states in joint-angle space. This situation arises in 

motion-capture data, where frame rates exceed 120 per 

second, and is discussed at more length in Section 6. 
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 Taken together, these joint transition graphs and 

Bayesian networks capture the patterns and correlations in 

joint movement. For simplicity, the model assumes joints are 

influenced by one or two other joints. The probability of 

transitioning between discretized body states s  to t  can 

then be written:  

),,|(=)|(=)( μsstPstPtsP
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). A transition graph that represents the movement patterns of the right ankle in a corpus of cartwheels from the Graphics Lab website 

at the Carnegie-Mellon University [31]. The numbers in each state identify the discretized orientation of the joint; edge weights represent the 

probabilities with which the ankle moves between states. Isolated vertices i.e., ankle orientations that were not observed have been omitted in 
the interests of clarity. 
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where μ  is the parent of  in the body graph. In general, 

joint  may have multiple parents, but in the work 

discussed here, the graph is a tree and each joint is 

influenced by a single parent joint. The search strategy in the 

following section uses this information to construct 

stylistically consonant full-body movement sequences 

between two prescribed positions. One can also, as described 

in Section 6, generate free-form movement that follow the 

corpus's patterns by walking these graphs in different ways. 

4.2. Using Joint Movement Patterns to Interpolate 

 We use a memory-bounded A* search strategy [32] to 

find an interpolation subsequence that moves smoothly 

between two discretized body postures 
A

s  and 
B

s . Recall 

that A* finds a path from an initial state to a goal state by 

progressively generating successors of the current state in the 

search. The algorithm places successor states on a priority 

queue, sorted according to a score that estimates the cost of 

finding a goal state. In the next iteration, the state with the 

best score is drawn from the priority queue, its successor 

states are computed and added to the queue, and the 

procedure is repeated until a goal state is found or until the 

queue is empty. In this application, the states in the A* 

search space are body states: that is, 23-vectors of discretized 

quaternions that represent full body positions. Note that all 

23 joints must reach the goal state 
B

s  at the same time, 

which makes the search more interesting—and more 

complicated. 

 To generate successors of some discretized body state 

x , we generate joint orientations recursively using the joint 

graphs and the Bayesian network. We first use the pelvis 

graph to generate the possible orientations of the pelvis
4
. 

Next, for each possible state pelvisx  of the pelvis, we 

generate the possible states of each of the pelvis's child joints 

(the hips and lumbar spine), given that the pelvis will be in 

state pelvisx . This recursive, top-down generation of body 

states allows us to filter out joint states that have zero or low 

probability from the search, thus keeping the effective 

average branching factor of each joint as small as possible. 

 The scoring for this search also involves both the joint 

graphs and the Bayesian network. Recall that a joint graph 

captures the movements of an individual joint, on the 

time-scale of a single keyframe. Edge weights in each joint 

graph correspond to the unlikeness of the associated 

movement, so that smaller weights connect joint orientations 

that are more frequent. (The unlikeliness is defined as one 

minus the probability that the joint takes the transition, as 

estimated from a given corpus.) The Bayesian network 

essentially modifies these probabilities, based on orientations 

of parent joints, to reflect the inter-joint coordination of the 

human body. To score a single whole-body movement, we 

use both of these data structures and sum the resulting 

                                                
4The successors of the joint-state x  are those vertices in G  that are connected 

to x  by an edge directed away from x . 

unlikeliness values of the movement's constituent joint 

motions. To score a movement sequence—a partial path 

between body positions 
A

s  and 
B

s , for instance—we 

simply sum the scores of the single-keyframe whole-body 

movements that make up that sequence. To estimate the 

score for the path from some intermediate state to the goal 

state, we use Dijkstra's algorithm [33] to find the 

shortest-path costs for each joint and then sum those costs. 

As required for A*, this heuristic will always underestimate 

the true cost to the goal state; see the appendix for a short 

proof. 

 As it expands successors, MOTIONMIND's memory- 

bounded A* search (MA*) stores only a certain fixed 

number of partial paths at any given time and “forgets” any 

paths that have a score worse than the minimum score in the 

current queue. This constitutes a kind of beam search 

because it only considers local body states near its current set 

of discovered paths. It is not guaranteed to find the globally 

optimal solution—which is not a goal here—but it can save 

time avoiding low-probability (i.e., less-promising) paths of 

body states. At each step of the search, MA* must generate 

K  successors, score each of these, and add them to the 

queue. The naive approach is to score an exponential number 

of successor states. If the average branching factor, b , of 

each joint is small, such a brute force approach may be 

possible. The corpus used for this paper generates joint 

orientation transition graphs with an average branching 

factor of approximately 2. Thus, the MA* search had to 

score fewer than 23
2=K  possible states. While the 

23
b  

term does not grow asymptotically with the length of the 

number of paths considered, it is a large constant that adds 

significantly to the running time. As the average branching 

factor of the joints increases—for example using a richer 

movement corpus, such as motion-capture data—successor 

generation using this naive approach may make the entire 

search infeasible. The running time of the search is the 

product of K , the total number of successor states generated 

at any given point in the search, and L , the number of total 

partial paths considered before finding the first goal state. In 

the worst case, L  is exponential in the number of body 

states in the graph and super-exponential in the number of 

joint orientations: 
M

bL

23

1== . In practice, though, L  is 

often much less even when the joint graphs are sparse. If this 

becomes a problem, one could add a parameter to terminate 

the search if the goal state is not reached before a tolerated 

number of paths have been explored. 

 Although not implemented in the current version of 

MOTIONMIND, we note that the generation of body states 

lends itself neatly to a dynamic programming solution, 

which would make successor state generation efficient when 

the set of possible joint orientations is large. A Baum-Welch 

forward and backward pass [34] can find the top  most 

probable body states in time )(*23*2 +bO  instead of the 

exponentially many in the worst-case example above. Rather 

than score all possible successors of the current body state in 

each step of the search, then, we could generate the 

best-scoring ones and put them on the priority queue if their 
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scores are better than the minimum score already in the 

queue. 

 There are a variety of opportunities for improvement 

here, some of which have interesting implications in an 

esthetic/dance context. Our search strategy is greedy: it 

ignores the cost of paths and scores nodes in the search 

based solely on the estimated distance between them and the 

goal. This can create “inefficiencies” in the interpolation 

sequences—places where the animated character appears to 

be headed towards the goal state, but then moves away. An 

appealing alternative would be to incorporate the path 

weights up to the current point in the solution as part of the 

scoring function, which should allow the search algorithm to 

find shorter, more-direct sequences. The esthetics place an 

extra layer of requirements and constraints on these kinds of 

“improvements,” however: simply taking the highest- 

probability branch can be a significant source of cliché. 

Incorporating more of the physics of motion into the 

process—e.g., adding constraints on the position, velocity, 

and acceleration of the center of mass, so the momentum of 

the body is conserved as it passes through the interpolated 

sections of the movement—makes practical sense, but does 

not fit smoothly into the A* framework. The topology that 

we chose for the Bayesian network may not accurately 

reflect the human body; the middle back, for instance, may 

influence the arms directly, rather than through the upper 

back and shoulder linkage in the child-parent scheme 

described above. It would clearly be better to learn the 

inter-joint coordination patterns from the corpus, say using 

dynamic Bayesian networks, rather than making a priori 

assumptions about them. 

4.3. Stylistically Consonant Interpolation: Results and 

Evaluation 

 Fig. (7) shows an example of the results produced by the 

algorithms described in Sections 4.1 and 4.2. The task 

presented to MOTIONMIND is to interpolate between a 

specified pair of body positions in a manner that is consonant 

with a corpus of ballet sequences. The starting and ending 

poses are shown at the top of the figure. The `before' and 

`after' torso positions (top left and top right, respectively) are 

only subtly different, but the weight-bearing and foot 

positioning differs significantly between the two, as are the 

arm positions and head orientations. The corpus included 38 

short ballets comprising 1720 individual body positions, 

drawn primarily from the LifeForms PowerMoves CD. We 

used the representation of Section 4.1 to capture the 

joint-movement patterns in this corpus, then used the 

algorithms of Section 4.2 to search the resulting graphs for a 

path between these two positions. The result was the 

six-frame interpolation sequence shown across the bottom of 

(Fig. 7), which moves between the specified positions in a 

manner that is consistent with the style of this corpus. First, 

the right leg comes forward to the extended forward low 

direction, making possible the succeeding forward shift of 

weight into a lunge
5
 stance. The torso/arm unit follows with 

a forward/side/back (called a “port de bras”) sequence that is 

often associated with the lunge position in the ballet lexicon. 

The transition to the given final pose is solved with a simple 

lift of the right arm. This sequence satisfies a number of 

stylistic tendencies in classical ballet:  

• a contralateral relationship between upper and 

lower limbs  

• a spatially direct cause/effect relationship between 

leg gesture and shift of weight  

• large-kinesphere articulation of torso only in the 

absence of locomotion  

• torso gesture in peripheral pathway; absence of 

isolational use of torso parts  

• peripheral pathways of arm gestures, using the arms 

as units rather than articulating extensively between 

upper and lower arm, generally in response to torso 

posture movement  

• constant outward rotation of legs  

• larger proportion of gestural action than locomotor 

action  

 Note that these characteristics are not programmed into 

MOTIONMIND a priori. They are present in the interpolated 

sequence only because our algorithms are able to effectively 

extract and use the patterns that are in the corpus. Many 

ports-de-bras appear in that corpus, for example, but none of 

them are associated with the specific lower-body position 

that appears in this interpolated sequence. This is a key 

point: MOTIONMIND has invented a physically and 

stylistically appropriate way to move the dancer between the 

                                                
5one knee bent, the other extended, with both legs weightbearing 

 

 

 

 

Fig. (7). Stylistically consonant interpolation: the six-keyframe sequence at the bottom of the figure interpolates between the two body 
positions at the top in a manner that is consistent with the patterns in a ballet corpus. 
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given positions. Recall that these postures were not simply 

pasted in verbatim from the corpus; they were synthesized 

joint by joint using the transition graphs and Bayesian 

network-directed A* search, and their fit to the genre is 

strong evidence of the success of the methods described in 

the previous section. We have used different variants of this 

strategy to interpolate between dozens of other pairs of 

postures. The interpolation subsequences so constructed 

included a variety of stylistically consistent and often 

innovative sequences; among other things, the interpolation 

algorithms used relévés, pliés, and fifth-position rests
6
 in 

highly appropriate ways—and all with no hard coding. 

 From a purely functional standpoint, the results have 

some room for evolution, as the sequences do include a few 

transitions that appear awkward to many human viewers. 

And occasionally an interpolated sequence is extremely long, 

using a great deal of seemingly unrelated motion to 

accomplish an apparently simple movement task. In one 

such instance, where the task was a simple 90-degree 

rotation of the right upper arm around its long axis, the 

algorithm constructed an 65-move sequence that involved 

much leg and trunk movement. While this sequence was 

stylistically consonant, it was highly discursive. This 

outcome was a by-product of working with a corpus that was 

really too small to be representative of human motion. As 

mentioned in conjunction with (Fig. 6), idiosyncratic 

motions—joint angles that appear only once in the corpus, in 

a single movement sequence—leave isolated, linear vertex 

chains in the graphs. This forces the search algorithms to use 

the entire linear sequence in order to access any of the 

vertices that appear in it. And since the search algorithm is 

designed to return equal-length paths for each joint, an 

idiosyncratically long sequence in one joint will force 

MOTIONMIND to “pad” all the other joints' movement 

sequences to match. While this filled-in movement does 

abide by the constraints of the corpus and is thus stylistically 

consonant, it can be very long. When the corpus is larger, the 

resulting movement graphs are generally more richly 

connected, which gives the search algorithms more leeway 

and reduces the occurrence of discursive motion in the 

results. Until recently, motion corpora were quite limited, so 

this was a real issue in our work. Motion-capture technology 

has become much more widespread, though, and many 

laboratories are producing richer corpora. As described in 

Section 6, we are working with the Graphics Lab at Carnegie 

Mellon to gather motion-capture data on different kinds of 

movement genres, ranging from ballet to contact improv and 

the martial arts. 

 Taking the Bayesian network constraints out of the 

search heuristic had some extremely interesting effects. To 

the layman's eye, the resulting sequences look jerky and 

unappealing, so we expected negative comments about them 

from professional dancers. However, it seems that an 

uncoordinated path through a classical ballet corpus is a very 

good way to generate unconventional sequences, and the 

                                                
6A relévé, a rising up onto the balls of the feet, is a common component of direction 
shift in ballet. A plié is a lowering of the center of gravity, generally through a knee 

bend. Fifth position is a two-footed stance with legs rotated outward and crossed to-
ward the mid-line. 

results can be inventive and appealing to modern dancers: 

“Wow! I'm going to use that move in my next piece!” In 

retrospect, this makes some sense: the modern dance genre 

actively works at violating expectations of movement 

appropriateness that have been received from traditional 

forms like ballet. (Choreographer Martha Graham went so 

far as to praise those potentially unappealing movements as 

“divine awkwardnesses”). 

 Animated movies of all of the sequences discussed in this 

section are available on the web [35]. 

4.4. A Turing Test  

 As a final piece of evaluation, we offer a Turing Test of 

our results. In the 1950s, Alan Turing suggested that one 

could evaluate machine intelligence using a blind test, in 

which human subjects are presented with a program's output 

and asked to determine whether or not that output was 

produced by another human [36]. In our test, we showed 

twenty short motion sequences—ten constructed by a human 

(`Human') choreographer/animator and ten constructed by 

these interpolation algorithms (`Computer')—to several 

classes of students at the University of Colorado at Boulder 

and at Harvard University between 1999 and 2004. The 

classes were unequal in size, ranging from 19 to 34 subjects. 

Each subject (‘Rater’) was asked to rate each sequence on 

three constructs based on the following ordinal scales: 

 

 This design resulted in the generation of a Model III 

(Mixed Effects) 3 Way Analysis of Variance (ANOVA) for 

each of the three questions. ‘Method’—the “treatment” 

variable ( A ) that describes whether a human or a computer 

generated the piece was, of course, a fixed effect. ‘Class’ 

( B ) and motion ‘Sequence’ (C) were treated as random 

effects, as was the resultant Interaction between them ( BC ). 

Within subject variability ( D ) was treated as a blocked 

effect. Class and Sequence, as well as their Interaction, were 

nested within Method. The Appropriate Error Terms (AETs) 

for each of the three effects tested were established using the 

methodology described by Scheffe [37]; the Quasi-F ratio for 

Method was constructed using the approach described by 

Winer [38]. As the data were ordinal in nature, the raw 

scores generated by each subject were transformed (
T

X ) 

using the square root transformation recommended by Dixon 

and Massey [39] prior to executing the ANOVA. 

 Appreciation of the results of the three ANOVA tables 

that follow requires an understanding that an algebraic 

combination of the Class and Sequence effects, as well as 

their interaction, constitute the AET for Method (that is, 

)()()( ABCACAB + ). Where Method was determined to be 

statistically significant ( 0.05= ), the importance of the 

observed difference was calculated as an Omega-Squared 

(
2

) coefficient, as detailed by Winer [38]. For each of 

those cases where a random effect was found to be 

significant, an Intraclass Correlation coefficient (
I

) was 
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Table 1. ANOVA—Question 1: Awkwardness 

 

Source of Variation 

(SV) 

Degrees of 

Freedom (df) 

Sums of  

Squares (SS) 
Mean Squares (MS) F p-value Importance 

Main Effects:       

Method (A) 1 51.07 51.07 4.095 
0.0528  

( 1,27.7=df ) 

4.00=
2 % 

 

Class within  Method 

(B(A)) 
8 15.99 2.00 1.52 0.1654 N.A. 

Sequence within  

Method (C(A)) 
18 212.28 11.79 8.93 0.000 ~16.97% 

Interaction Effects:       

Class by Sequence within 

Method (BC(A)) 
72 95.37 1.32 3.80 0.0000 ~5.80% 

Residual (e) 2070 718.37 0.35    

Blocked Effects:       

Rater within   

Method  Class (D) 
230 183.7851 0.80    

 

Table 2. ANOVA—Question 2: Physical Plausibility 

 

Source of Variation 

(SV) 

Degrees of  Free-

dom (df) 

Sums of  

Squares (SS) 

Mean Squares 

(MS) 
F p-value Importance 

Main Effects:       

=
2 N.A. 

Method (A) 1 16.62 16.62 1.19 
0.2859  

( 1,24.63=df ) 
 

Class within  Method 

(B(A)) 
8 9.85 1.23 0.94 0.3172 N.A. 

Sequence within  

Method (C(A)) 
18 252.40 14.02 10.70 0.000 ~22.02% 

Interaction Effects:       

Class by Sequence 

within Method (BC(A)) 
72 94.13 1.31 4.09 0.0000 ~6.32% 

Residual (e) 2070 654.04 0.32    

Blocked Effects:       

Rater within   

Method  Class (D) 
230 154.7447 0.67    

 
calculated as a measure of the importance of the observed 

effect [40]. This was done only to facilitate the interpretation 

of the results associated with the Method effect. Table 4 

summarizes the mean and median for the transformed and 

raw data values across all Classes and Sequences. 

 Table 1 presents the results of the ANOVA for Question 

1: ‘Awkwardness’. As shown by this analysis, a marginally 

significant difference in the mean transformed ratings 

associated with each Method was observed. Table 2 presents 

the results of the ANOVA for Question 2: ‘Physical 

Plausibility’. There was no significant difference in Method 

between the mean-transformed ratings recorded for Physical 

Plausibility. The difference in the transformed mean ratings 

corresponded to raw data averages of 3.36 for the 

Computer-generated sequences, versus 3.68 for the 

Human-generated sequences. Table 3 presents the results of 

the ANOVA for Question 3: ‘Esthetic Appeal’. As shown by 

this analysis, a statistically significant difference in the mean 

transformed ratings associated with each Method was 

observed. As shown by the analyses reflected by the three 

ANOVA output tables, a statistically significant difference in 

the mean transformed ratings associated with each Method 

was observed for Esthetic Appeal, but no statistically 

significant effect was found for Physical Plausibility. The 

question pertaining to Awkardness yielded mixed results. 

While the mean rating of human-generated  sequences was 

higher than computer-generated sequences, the medians were 

identical. The difference between the perceived Awkward- 
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ness of sequences generated by computer compared to  

human was borderline significant, with a p-value of 0.052. 

Thus, some of the Raters may have been more sensitive to 

maladroit nuances in the interpolated sequences than other 

Raters. 

 In summary, the Human-generated sequences were found 

by the Raters to be slightly more natural and pleasing than 

the Computer-generated sequences. While no statistically 

significant difference in the two sets of sequences could be 

discerned in Physical Plausibility, it is interesting to note that 

the observed differences in the two sequence means were 

consistent with the differences associated with Esthetic 

Appeal and less with Awkwardness. 

 In terms of importance as a function of explained 

variability, the greatest difference observed between human- 

and computer-generated sequences was associated with 

Esthetic Appeal. The inability to detect a significant 

difference between the levels of Method studied, as well as 

the relatively low level of importance detected for the two 

cases where a statistically significant difference was, in fact, 

observed, is due to the same condition. Specifically, the 

explained variability within each method due to differences 

between Sequences was relatively large, and was 

accompanied by a significant interaction between Class and 

Sequence. In other words, not only was there a large 

difference in how each Sequence was rated within their 

respective Method levels, but each Class did not evaluate 

each of the Sequences uniformly. Both of these contributions 

to variability in the model are components of the AET 

associated with Method. Therefore, it might be reasonable to 

surmise that had there been more uniformity among the 

Sequences associated with the Methods tested, the 

differences due to Method may have appeared even more 

pronounced, and the superiority of Human- versus 

Computer-generated effects on all three questions tested may 

have been observed. 

Table 3. ANOVA—Question 3: Esthetic Appeal 

 

Source of Variation 

(SV) 

Degrees of  

Freedom (df) 

Sums of  

Squares (SS) 

Mean Squares 

(MS) 
F p-value Importance 

Main Effects:       

Method (A) 1 114.61 114.61 14.17 
0.0023  

( 1,13.25=df ) 10.2=
2 % 

Class within Method 

(B(A)) 
8 12.33 1.54 1.69 0.1156 N.A. 

Sequence within  

Method (C(A)) 
18 134.35 7.46 8.20 0.0000 ~12.01% 

Interaction Effects:       

Class by Sequence 

within Method (BC(A)) 
72 65.73 0.91 2.90 0.0000 ~4.11% 

Residual (e) 2070 649.31 0.31    

Blocked Effects:       

Rater within  

Method  Class (D) 
230 148.84 0.65    

 

Table 4. Means and Medians 

 

Descriptive Statistics: Transformed Data Descriptive Statistics: Raw Data 
Question 

Mean Median Mean Median 

Awkwardness     

Computer  

Human 

3.545 

3.847 

3.732 

3.732 

2.81 

3.33 

3.00 

3.00 

Physical Plausibility     

Computer 

Human 

3.853 

4.021 

4.236 

4.236 

3.36 

3.68 

4.00 

4.00 

Esthetic Appeal     

Computer 

Human 

3.535 

4.236 

3.732 

4.236 

2.76 

3.58 

3.00 

4.00 
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5. RELATED WORK ON MOVEMENT, STYLE, AND 

VARIATION 

 Human movement has been studied in great detail by the 

graphics, vision, and machine-learning communities, as well 

as in biomechanics. A large amount of this effort has been 

devoted to recognizing and tracking the body and its parts in 

various kinds of 2D image data. The task here is different: 

our input is a 3D model in the form of limb lengths and joint 

angles the kind of output that is produced by software that 

deduces body position from a collection of still images and 

our goal is to model and use the progressions and 

correlations in those data to create stylistically consonant 

movement. 

 Representations are always key, and several groups (e.g., 

Mataric et al. [41] and Pentland [42]) have focused on how 

to construct good primitives for representing movement. Our 

representations and algorithms, in contrast, are not intended 

to help humans understand motion or style; they are 

designed simply to allow a machine to duplicate it. This 

means that they can work at a finer grain—individual joint 

movements, rather than movement clips or even motifs—and 

that they need not operate under the kinds of constraints that 

arise in, say, inverse kinematics problems. Note that 

rendering is not part of the research goal here; we use the 

fairly primitive Lifeforms software because it is the lingua 

franca in the community (dance) in which we are working. 

 There have been hundreds of papers on recognizing, 

analyzing, quantifying, and understanding various aspects of 

motion, especially gait (e.g., [43]) and hand gesture (e.g., 

[44]). We are interested in how the whole body moves, as 

well as how it moves differently in different movement 

genres, and our goal is to generate original movement that 

follows a given style, not to recognize the motion—let alone 

understand or decompose it in any detail. Several other 

groups have produced interesting results in this area. Some 

of this work, not surprisingly, has used inverse kinematics 

(IK). [45], for instance, uses planning and a data-driven 

constraint-based IK to attain naturalness. [46] also uses IK, 

tuning a couple of its parameters (joint stiffness, hip swing) 

to alter the style of a given movement sequence in physically 

meaningful ways—e.g, to introduce a limp into a walk. 

Other approaches that have proved to be useful in creating 

and/or adapting “natural-looking” motion include 

optimization of appropriate objective functions [47], 

combinations of IK and optimization [48], dynamical 

modeling & control theory [25], and detailed 

musculoskeletal modeling [49]. All of these approaches 

devote significant analytical effort to the modeling process, 

whereas our goal is to learn the models from the data. This 

makes our approach better at capturing the vagaries of 

real-world movement data, and thus easier to apply to a new 

body—one that may violate a priori modeling assumptions 

in subtle ways. The work of the Graphics Lab at Carnegie 

Mellon is probably the most closely related to ours. In [50], 

for instance, motion is decomposed by body part, modeled 

individually using different machine-learning techniques, 

and combined via an ensemble method that strives for 

naturalness. Our techniques are different, but the goals are 

similar and our methods require a bit less tuning. 

 In the past few years, some other strategies have been 

proposed specifically for learning movement style from a 

corpus of examples: using singular-value decomposition 

[51], principal-components analysis [52], hidden Markov 

models [53], probability distributions over the space of all 

possible poses [54], linear models [55], and even nonlinear 

optimization techniques [56]. Probabilistic graphical 

representations, such as the ones used in our work, have 

significant advantages over these approaches. They can be 

used to capture stylistic trends or motifs that go beyond 

kinesiology. The models can be used to help recognize the 

presence of different genres in pieces to uncover influences 

of a compilation. The parameters in such models have 

intuitive meanings and may provide insights about what 

types of movements distinguish styles, forms, or different 

choreographers from each other. Finally, as demonstrated in 

our work with MOTIONMIND, they can be used to synthesize 

novel animations. The simulations can either be run without 

constraints, or provided with user-specified conditions, such 

as the requirement that completely- or partially-specified 

body positions be visited at specific time points. Capturing 

stylistic information, in addition to the natural physics of 

motion, is a critically important aspect to physical 

plausibility and extemporization of the results. Incorporating 

abstractions of the movement (e.g. frames 160 through 342 

represent a "jump" or a "plie") into learning graphical 

models, as the hierarchical models introduced by Li et al. 

[9], promises to provide important generalizations of the 

approach discussed in this work. 

 The movie industry has devoted a tremendous amount of 

effort to computer-generated variations on motion 

sequences. WETA, for instance, used a software tool named 

MASSIVE in the Lord of the Rings trilogy to generate 

thousands of battles sequences automatically. None of this 

work has used dynamical chaos—the fundamental 

variational technique in the work described here. As 

described in Section 1, chaos has been used to create musical 

variations, and that was the catalyst for the project described 

in this paper. Chaos has been used to generate music from 

scratch as well (e.g., [57]), but the results are not at all 

consonant with any established musical style. 

 There are a few other groups working at the intersection 

of computer science and dance, including NYU, Arizona 

State, and Ohio State. The NYU group shares our specific 

interest in using motion-capture data for analysis and 

synthesis purposes, and an interest in dance [58]. 

6. DISCUSSION AND FUTURE DIRECTIONS  

 The two strategies described in this paper do a 

surprisingly good job of duplicating some of the efforts of 

human choreographers. CHAOGRAPHER uses a chaotic 

mapping to shuffle an original sequence, introducing a 

strong element of variation. The stretching and folding along 

the attractor guarantee that the ordering of the movements in 

the chaotic variation differs from that in the original 

sequence. At the same time, the fixed geometry of the 

attractor ensures that the variation resembles the original 

piece—not in the classical theme-and-variations formula 

used in Western music and dance, but via an ordinal shuffle, 
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a technique that became popular among human composers of 

music and dance in the late 20th century. Because ordinal 

shuffles reorder subsequences of a piece, however, they can 

introduce abrupt transitions, where the ending posture of one 

subsequence is physically very different than the beginning 

posture of the subsequence that follows it. To smooth these 

transitions, we developed MOTIONMIND, a group of 

corpus-based schemes that employ directed graphs and 

Bayesian networks to capture and enforce the dynamics of a 

given group of movement sequences. To interpolate between 

two positions, one searches these graphs; to generate 

free-form movement, one walks them. Either way, the 

resulting movement sequences are both novel and also 

consistent with the style that is inherent in the corpus from 

which they were built. 

 CHAOGRAPHER's results were quite successful, as judged 

by their highly positive reception by people whose 

profession is to move. When we showed our first results to 

the dance community, we were delighted to find that 

CHAOGRAPHER had duplicated an approach used by one of 

the most innovative and respected choreographers of the 

20th and 21st centuries. “No one has revised ‘the 

fundamentals’ more fundamentally than Merce Cunningham; 

for example: [...] compositional practices based on the use of 

‘chance operations,’ (producing new strategies for linking 

together disparate phrases of movement)...” [20]. 

Interestingly, humanists fall into nonlinear dynamics 

terminology to describe Cunningham's work and some of 

John Cage's musical techniques: “Chance operations is the 

marvelously oxymoronic phrase that Cunningham and Cage 

employ to describe the ‘rules’ (or ‘operations’) that govern 

these interactions. As with many complex systems, the 

resulting behavior is both deterministic and unpredictable” 

[20]. Some interesting quotes from Cunningham's thinking 

about all of this appear in Appendix B. Following up on the 

creative opportunities that CHAOGRAPHER provides, two of 

the authors of this paper (EB & DC) created an original 

performance piece entitled CON/CANTATION, which was 

based on CHAOGRAPHER's variations of an original dance. 

The piece premiered in Boston in April 2007 to warm 

audience reception and has been performed several times 

since then. 

 MOTIONMIND's success was more mixed because its task 

is much harder and measures of its success are much more 

subjective. The notion of stylistic consonance, in particular, 

is not easy to define or measure, but very easy for the human 

eye & brain to perceive. Dancers and choreographers have 

studied in great detail the ways—at the individual, artistic, 

and cultural levels—in which movement tendencies and 

choices tend to fall into discernible ranges that are relatively 

narrow in relation to the range of possibilities of the human 

body in time and space. As a result, there are some standard 

rules, procedures, and patterns in certain dance and martial 

arts genres that can be used to evaluate MOTIONMIND's 

results. As described in [29], we went through a variety of 

dances, frame by frame, with experts who were trained in 

“movement analysis”, a certificate program offered by many 

dance departments. With a few exceptions, these experts 

proclaimed the sequences to be stylistically consonant. They 

did not pass the Turing Test in section 4.4 with flying colors, 

however. The subjects in that test saw a clear difference 

between human- and MOTIONMIND-generated sequences in 

terms of appeal, but rated them similarly in terms of 

awkwardness and physical plausibility. (Intriguingly, expert 

dancers have a different take on this than non-dancers: they 

noted the differences, but perceived the awkwardnesses as 

appealing. We only had data from six subjects in this 

category, however, so those results are inconclusive and 

those data are not included in Section 4.4.) Note that this test 

was extremely demanding. The human-generated sequences 

were unconstrained, while MOTIONMIND was given 

prescribed starting and ending positions and required to use 

only motions in a (quite limited) corpus. Human motion is 

both breathtakingly complex and very difficult to describe, 

and our perception of it is highly tuned and very sensitive. In 

view of these challenges and limitations, even a small 

measure of success on this Turing Test is a real achievement. 

 The corpora used in this work were, as mentioned above, 

comparatively limited. A richer corpus with more examples 

of movement in a genre would give our algorithms more 

choices. This would likely increase the esthetic appeal of the 

results, but it would increase the search complexity for 

animation synthesis. MOTIONMIND takes tens of seconds to 

build the joint-transition graphs and Bayesian networks from 

corpora containing on the order of a thousand body 

positions, but searching those data structures for an 

interpolation path can require much longer. These numbers 

depend on the number  of joints in the representation, the 

number M  of unique orientations that each joint can take 

on, and the branching factor (b ) of the graphs that track 

those transitions. In our current implementation, 23= , 

M  ranges from 50 to a few hundred, and b  is roughly 

two. Bearing in mind that the worst-case computational 

complexity of the search is )(

23

1=
M

bO , it is clear that this 

will be a serious issue if the corpus is richer. 

 Motion-capture systems, one way to gather a lot of data 

about human movement, reconstruct a three-dimensional 

model of a moving object from a series of simultaneous 

views from cameras arrayed around that object. Reflective 

markers are used to identify salient locations in the object 

joint positions, in the case of a human performer. The 

motion-capture (“mocap”) software reconstructs the 3D 

positions of these markers, tracks how they move, and 

deduces how the connections between them (i.e., the limbs) 

evolve. This increased realism could enable MOTIONMIND to 

produce better results. Recall, that a particular joint 

orientation that appears only once in the corpus may force 

the interpolation algorithms to produce discursive 

movement. If the graphs were built from a corpus that 

adequately sampled the full richness of human motion, each 

joint orientation would likely be visited many times in many 

different progressions, giving the interpolation algorithms 

more leeway in the search. Though this will increase the 

computational complexity, as discussed below, mocap data 

is very much worth the trouble because it captures what real 
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people are doing, and in accurate and anatomically 

appropriate ways. 

 To explore this further, we are collaborating with the 

Carnegie-Mellon Graphics Lab to obtain mocap data. These 

data sets use 52 markers that delineate 30 body parts and are 

recorded at 120 frames/second. This is far better data than 

the corpus that was used to produce (Fig. 7) (1720 frames of 

ballet, each with 23 joints, entered by hand by human 

animators). Indeed, it is almost too good. The high frame 

rate—which makes the data pile up very rapidly—not only is 

unnecessary for the types of motion that we study, but it 

actually affects the topology of the graphs. Each position is 

sampled many times and every micro-movement is recorded 

and re-recorded, so every vertex has a high-probability 

self-loop edge and only a few nearby low-probability 

successor states. For these reasons, we downsample the 

mocap data to 5Hz. Even so, it overwhelms our search 

algorithms. Because the joints' motions are richer, the graphs 

contain many more states ( M  is many hundreds instead of 

50-100) and they have a higher branching factor— 3n  on 

the average, if the quantization step is five degrees, instead 

of the 2n  in the corpora used to create (Fig. 7). In graphs 

like this, finding an interpolation path for even a highly 

simplified body
7
 can take tens of minutes. We are working 

on improving our algorithms to handle this complexity. 

 Joint coordination is the key here, we believe—not only 

to prune the search space, but also to capture the essence of 

movement style. Our simple, static Bayesian network is an 

extremely rough approximation of coordination, but even 

that turned out to be important not only in streamlining the 

search, but in achieving stylistic consonance. When we 

removed the Bayesian network from the A* score, the search 

time increased
8

 and the results did not adhere to the 

movement style at all. The results of a coordination-free 

search of graphs built from a ballet corpus, for instance, 

looked like a combination of modern and Irish step dance. 

Coordination is clearly fundamental to movement, and one 

really should learn it from the data, rather than assuming its 

structure a priori as we did. To this end, we are currently 

exploring the use of dynamic Bayesian networks [59] to 

extract these coordination patterns automatically from mocap 

data. It will be important to learn not only which pairs of 

joints are related, but also examine combinations of joint 

movement. In ballet, as mentioned previously, the hand 

rarely crosses the centerline of the body. This is a 

relationship between two different sets of joints: the 

{shoulder, elbow, wrist} combination, which specifies where 

the hand is, and whatever pair of joints one chooses to define 

the body's centerline. This is related to the inverse 

kinematics problem in robotics, and also to the notion of 

what comprises a movement motif. There is evidence that 

human motion occupies only a subset of the 

high-dimensional space: “most dynamic human behaviors 

                                                
7pelvis, femurs, lumbar spine 

8Recall that the Bayesian network effectively reduces b  in the O(b =1

23
M

)  

equation. 

are intrinsically low dimensional with, for example, legs and 

arms operating in a coordinated way [60]”. 

 All of this begs another important question: whether or 

not analyzing movement and/or enforcing stylistic 

consonance at the joint level is the right thing to do at all. It 

is not clear, for instance, how to tell from a joint transition 

graph like Fig. (6) whether the corpus involved ballet or 

modern dance, or whether the dancer has a sore ankle. One 

can do some simple reasoning about the graphs: presumably 

a trained dancer would have wider range of motion than a 

novice, which would translate to more vertices and probably 

a higher branching factor. Beyond that, analysis becomes 

difficult. The issue, again, is that joint coordination, not 

orientation, appears to be the key to style—and not just 

individual joints, or pairwise combinations of joints. Rather, 

movement “motifs” are an emergent phenomenon of 

interactions between different sets of joints, all moving 

under the constraints to physics (gravity, balance, 

momentum, etc.). These influences do leave their signatures 

in the graphs described in Section 4. Hierarchical models [9] 

attempt to classify some of this phenomenology more 

explicitly. Like MOTIONMIND's models, though, these are 

intended for use in interpolation and extrapolation. They are 

not necessarily good tools for understanding motion. 

 One can also use the models described in this paper to 

generate free-form original movement that fits a given genre. 

The obvious strategy for doing this, however—a simple 

graph walk that follows the highest-probability edge 

sequence—produces clichéd movement. If the keyframe rate 

is much faster than the movement time scales, as in 

motion-capture data, the results are even worse: because the 

highest-probability edge from any vertex is always the self 

loop, every joint freezes in place. Injecting some randomness 

into the walk by sampling transitions rather than always 

choosing the most likely next state makes things more 

interesting. Note that this kind of graph walk does not suffer 

from the computational complexity problems mentioned 

above, which derive from the constraints of the directed 

search (viz., the combinatorial explosion engendered by the 

need to have all the joints move in synchrony between the 

designated orientations). 

 Dance is not the only application of these ideas. 

Strategies for variation and synthesis of human motion can 

be usefully applied to any sequences that have characteristic 

patterns. Colleagues of ours have used our code to generate 

chaotic variations of the words in Shakespeare's sonnets and 

Bush's 2004 inauguration speech, as well as frames in 

movies and various image decompositions. There are also 

many potential engineering applications. A flight simulator, 

for example, presents pilots with scenarios comprised of 

timed subsystem failures. Certain patterns are common (e.g., 

engine 1 coughs and then fails). Expert simulator training 

personnel extract these patterns from records of emergency 

situations and then use them to craft the scenarios presented 

to the trainees. The methods presented in this paper could be 

used to learn these patterns from corpora of flight recorder 

data and concoct new training scenarios that put them 

together in unexpected—and yet consistent—patterns. 
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APPENDIX A — SEARCH HEURISTIC 

 Proof that Dijkstra's shortest path distances are 

optimistic. 

 Let h  be the current estimate of the cost to the goal 

state, which we can write as the sum of the shortest path 

costs for each joint: 
k

hhhh +++ ...=
21

, where 
i

h  is the 

shortest path cost of joint i . Suppose there is a path from 

the current state to the goal state with a lower cost, z . This 

cost can also be written as a sum of the costs of the joint 

transitions: 
k

zzzz +++ ...=
21

, where each 
i

z  is the cost 

for joint i  to transition from the current state to the goal 

state. This implies that there is at least some joint i  where 

ii
hz < . This is a contradiction since this means there is a 

lower cost path for joint i  not found by Dijkstra's 

algorithm. 

APPENDIX B — THOUGHTS ON ORDINAL 

VARIATION IN MUSIC AND DANCE  

Merce Cunningham on Dance 

 Regarding Solo suite in space and time (1953): 

• “The spatial plan for the dance, which was the 

beginning procedure, was found by numbers the 

imperfections on a piece of paper (one for each of 

the dances) and by random action the order of the 

numbers. The time was found by taking lined paper, 

each line representing five inch intervals. 

Imperfections were again marked on the paper and 

the time lengths of phrases obtained from random 

numbering of the imperfections in relation to the 

number of seconds”. 

• “You do not separate the human being from the 

actions he does, or the actions which surround him, 

but you can see what it is like to break these actions 

up in different ways, to allow the passion, and it is 

passion, to appear for each person in his own way”. 

• “A large gamut of movements, separate for each of 

the three dances, was devised, movements for the 

arms, the legs, the head and the torso which were 

separate and essentially tensile in character, and off 

the normal or tranquil body-balance. The separate 

movements were arranged in continuity by random 

means, allowing for the superimposition (addition) 

of one or more, each having its own rhythm and 

time length. But each succeeded in becoming 

continuous if I could wear it long enough, like a suit 

of clothes”. 

 Referring to solos from 1953: “All were concerned with 

the possibility of containment and explosion being 

instantaneous. The trilogy used chance procedures in the 

choreography, sometimes in the smallest of fragments and at 

others in large ways only.” 

 Referring to Space (1963): “In Space, the dances had 

possibilities for improvisation within a space scale.... Within 

a section the movements given to a particular dancer could 

change in space and time and the order the dancer chose to 

do them in could come from the instant of doing them....” 

 Hip Hop Culture 

 “Cutting and pasting is the essence of what hip-hop 

culture is all about for me. It's about drawing from what's 

around you, and subverting it and decontextualizing it.” DJ 

Shadow [61]. 

 “I look at all the different parts and see how I can 

organize them in a way. It's like maths. Very mathematic. It's 

like graphs!” Blockhead [62]. 
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